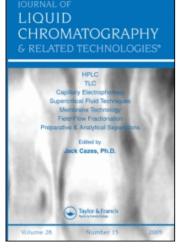
This article was downloaded by:


On: 24 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-

41 Mortimer Street, London W1T 3JH, UK



## Journal of Liquid Chromatography & Related Technologies

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713597273

# Chromatographic Behaviour of 48 Metal Ions on TBP Impregnated Silica Gel-G Layers

M. Qureshia; B. M. Sethib; S. D. Sharmab

<sup>a</sup> Chemistry Section, Z.H. Engineering College, Aligarh Muslim University, Aligarh, India <sup>b</sup> Chemistry Department, Hindu College, Moradabad, India

To cite this Article Qureshi, M. , Sethi, B. M. and Sharma, S. D.(1983) 'Chromatographic Behaviour of 48 Metal Ions on TBP Impregnated Silica Gel-G Layers', Journal of Liquid Chromatography & Related Technologies, 6: 1, 165-177

**To link to this Article: DOI:** 10.1080/01483918308066880

URL: http://dx.doi.org/10.1080/01483918308066880

### PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

# CHRCMATOGRAPHIC BEHAVIOUR OF 48 METAL ICNS ON TBP IMPREGNATED SILICA GEL - G LAYERS

M. GURESHI CHEMISTRY SECTION Z.H. ENGINEERING COLLEGE ALIGARH MUSLIM UNIVERSITY ALIGARH, INDIA

B.M. SETHI and S.D. SHARMA CHEWISTRY DEFARTMENT HINDU COLLEGE MCRADABAD, INDIA

#### ABSTRAC'

The separation potential of TEF impregnated silica gel-G for 48 metal ions has been explored in a number of solvent systems. The effect of the degree of impregnation of TBF has been studied and some important binary and ternary separations were achieved.

#### INTRODUCTION

In 1958, Winchester(1) first combined the favourable features of high molecular weight extractants with a chromatographic technique and reported the use of di(2 ethyl hexyl) phosphoric acid loaded on Al<sub>2</sub>O<sub>3</sub> for separating a number of rare earths. Dilute HCl was used as a mobile phase. Since then reversed-phase chromatography has become very popular and hundreds of papers have been published using high molecular weight amines, substituted quaternary ammonium salts, heterocyclic amines(2) and tetra substituted pyrazole(3) as stationary phases. In this paper, we described the study of the effect of tri n butyl phosphate concentration on plates loaded with silica gel-G. HCl and HNO<sub>2</sub> have been used as eluants.

We have tried to improve the separations by using some complexing acids such as tartaric acid, citric acid and oxalic acid.

#### MATERIALS AND METHODS

#### Apparatus

TLC apparatus (Toshniwal, India) was used to prepare thin layers on glass plates (20x3 cm). The plates were developed in glass jars (20x6 cm).

Reagents

Silica gel-G, tri n-butyl phosphate and benzene were all of analytical grade from E.D.H. England. Other chemicals were of AnalaR grade.

Test solutions and Detectors

Test solutions, 0.1M of chlorides, nitrates or sulphates of cations were prepared in a little amount of the corresponding acids. Conventional snot test reagents were used for detection perposes (4).

Preparation of TBP impregnated thin layers

The slurry was prepared by mixing silica gel-G with conductivity water in the ratio of 1:3 with constant shaking for about 5 min. This slurry was immediately coated on the clean glass plates with the help of an applicator and uniform thin layers ( $\sim 0.15$  mm thick) were obtained. The plates were first dried at room temperature and then in an electric oven for 2 hrs. at 100  $\pm$  5°C. These plates were stored in an oven at room temperature. Silica gel-G layers were then impregnated with tri n butyl phosphate in benzene. Lenzene was evaporated by heating the plates in an electric oven at 90  $\pm$  5°C for 1 hr. The plates were then stored in an oven at room temperature and used as such for chromatography.

Frocedure

The sample solution was loaded (1 or 2 Spots) on TEP impregnated silica gel-G plates with the help of plass capillaries and the spots were allowed to dry at room temperature. The solvent ascent was always 11 cm. The  $R_{T}$  and  $R_{T'}$  were measured after detection.

Solvent systems
The following solvents were used:

S<sub>1</sub> 1N HCL

1N HNO

1N H2SO/

0.1N Oxalic Acid

 $s_5$ 0.1M Tartaric Acid

 $s_6$ 0.1M Citric Acid

#### RESULTS

The Rr values for only those cations which give compact spots were taken for plotting the figures. Intrestingly, most of the

TABLE 1
Binary Separations Achieved Experimentally

| Solvent               | % TBP<br>Impregnation | Separations Achieved<br>Metal ion (R <sub>T</sub> -R <sub>L</sub> )                                                                                                                                                                                                                                                                                                     | Time    |
|-----------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| s <sub>1</sub>        | 20                    | $T1^{3+}(0.00-0.00) - Ga^{5+}(0.50-0.60)$<br>$In^{3+}(0.00-0.10) - La^{3+}(0.55-0.85)$<br>$Mo^{6+}(0.10-0.25) - Te^{4+}(0.70-0.95)$<br>$Mo^{6+}(0.00-0.20) - UC_{2}^{2+}(0.30-0.62)$<br>$Cs^{+}(0.10-0.35) - K^{+}(0.90-1.00)$<br>$W^{6+}(0.00-0.00) - UC_{2}^{2+}(0.20-0.40)$<br>$W^{6+}(0.00-0.00) - Cr^{5+}(0.36-0.64)$<br>$Ti^{4+}(0.00-0.06) - Ce^{3+}(0.35-0.65)$ | 1h.30m. |
| \$ <sub>1</sub>       | 40                    | $W^{6+}$ (0.00-0.00) - $Se^{4+}$ (0.80-1.00)<br>$Ee^{6+}$ (0.00-0.20) - $Se^{4+}$ (0.80-1.00)<br>$Ee^{4+}$ (0.85-1.00) - $Ee^{2+}$ (0.00-0.10)<br>$Ee^{5+}$ (0.08-0.30) - $Ee^{4+}$ (0.45-0.55)                                                                                                                                                                         | 1h.40m. |
| s <sub>2</sub>        | 20                    | $z_r^{4+}(0.00-0.08) - La^{3+}(0.50-0.90)$<br>$T_1^{4+}(0.00-0.28) - La^{3+}(0.58-0.88)$<br>$Y^{3+}(0.21-0.47) - La^{3+}(0.58-0.88)$                                                                                                                                                                                                                                    | 1h.40m  |
| s <sub>2</sub>        | Zero                  | $Z_r^{4+}(0.00-0.20) - \frac{9}{10}^{4+}(0.50-0.35)$<br>$Z_r^{4+}(0.00-0.05) - F_r^{5+}(0.60-0.90)$                                                                                                                                                                                                                                                                     | 40m     |
| S <sub>3</sub>        | 20                    | $Th^{4+}(0.00-0.35) - Y^{3+}(0.85-0.95)$<br>$Pb^{2+}(0.00-0.00) - Fe^{2+}(0.90-1.00)$<br>$Ti^{4+}(0.00-0.30) - En^{2+}(0.70-1.00)$<br>$Nb^{5+}(0.00-0.10) - VC^{2+}(0.80-1.00)$                                                                                                                                                                                         | 2h.     |
| S <sub>4</sub>        | 2C                    | $\text{Fe}^{3+}(0.00-0.10) = \text{Fe}^{3+}(0.60-0.80)$<br>$\text{Ti}^{4+}(0.00-0.05) = 2\text{r}^{4+}(0.22-0.36)$<br>$\text{Fr}^{3+}(0.15-0.50) = \text{Ce}^{3+}(0.62-0.85)$                                                                                                                                                                                           | 1h.50m  |
| <b>s</b> <sub>5</sub> | 20                    | $\text{Au}^{3+}(0.00-0.00) - \text{Ft}^{4+}(0.90-1.00)$<br>$\text{Sn}^{4+}(0.00-0.75) - \text{Sn}^{2+}(0.50-0.60)$                                                                                                                                                                                                                                                      | 1h.50m  |
| <b>s</b> 6            | 20                    | $\text{Eg}^{2+}(0.00-0.30) - \text{Fe}^{3+}(0.75-1.00)$<br>$\text{Eg}^{2+}(0.00-0.15) - \text{Cd}^{2+}(0.70-1.00)$<br>$\text{Eg}^{2+}(0.00-0.10) - \text{Zn}^{2+}(0.72-1.00)$                                                                                                                                                                                           | 1h.50m  |

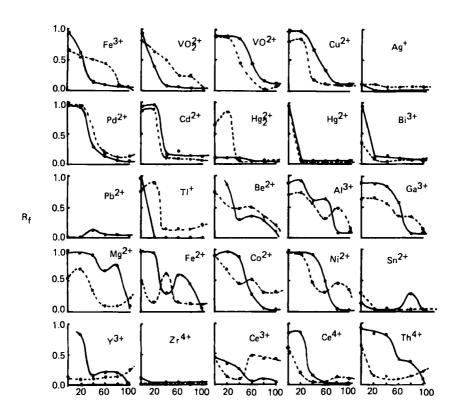
 $s_6$ 

| Solvent        | % TBP<br>Impreg-<br>nation | Separations Achieved<br>Metal ion (R <sub>T</sub> -R <sub>L</sub> )                                                                                                                                                        | Time   |
|----------------|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| S <sub>1</sub> | 20                         | $\text{Bi}^{3+}(0.10-0.20) - \text{Ir}^{3+}(0.35-0.55) - \text{Fd}^{2+}(0.85-1.00)$                                                                                                                                        | 1h.30m |
| s <sub>2</sub> | 20                         | $Pb^{2+}(0.00-0.00) - Fe^{3+}(0.40-0.60) - Pd^{2+}(0.70-0.90)$                                                                                                                                                             | 1h.40m |
| s <sub>2</sub> | Zero                       | $2r^{4+}(0.00-0.00) - 00_2^{2+}(0.52-0.72) - Fd^{2+}(0.94-1.00)$                                                                                                                                                           | 40m    |
| s <sub>4</sub> | 20                         | $\operatorname{Sn}^{4+}(0.00-0.15) - \operatorname{Fe}^{3+}(0.30-0.60) - \operatorname{Cd}^{2+}(0.80-0.90)$<br>$\operatorname{Sn}^{4+}(0.00-0.15) - \operatorname{Fe}^{3+}(0.50-0.70) - \operatorname{Fd}^{2+}(0.80-1.00)$ | 1h.50m |

 $Fb^{2+}(0.00-0.00) - Ti^{4+}(0.40-0.70) - V0^{2+}(0.80-1.00)$  1h.50m.

TABLE 2
Ternary Separations Achieved Experimentally

separations were achieved on 20% TBP inpregnated silice gel-G layers. The important binary and ternary separations are summarized in Table 1 and 2.


#### DISCUSSION

Figs. 1a and 1b show the effect of impregnation on the  $R_{\rm f}$  values of the metal ions in 1HHCl and 1K HKO<sub>3</sub>. It is apparant that as we increase the impregnation, the  $R_{\rm f}$  value generally decreases. However, in the case of  $Ag^+$ ,  $Fb^{2+}$ ,  $Sn^{2+}$  and  $Zr^{4+}$ , the  $R_{\rm f}$  values are uniformly low in both the solvents at different degrees of impregnation. This shows a definite interaction of silica gel-u with the cations in question.

Figs. 2 and 3 refer to the  $k_{\rm f}$  values of different metal ions in 15 dHC<sub>2</sub> and 0.1M citric acid. Even at the low concentration of 0.1M, the complexing properties of citric acid are apparant and very few metal ions show an  $k_{\rm f}$  value of less than 0.1.

rigs. 4a, b and c explain the effect of phy of the acids used as solvents, on the  $R_f$  values of metal ions. In almost all cases, the curve passes through a maximum or a minimum. Whis is because of the two factors which are affecting the  $R_f$  values i.e., the  $p_f$  and the couplex formation.

BEHAVIOR OF METAL IONS 169



Percentage impregnation of TBP in Benzene

1N HCI
1N HNO3

FIGURE 1a. Flot of  $\mathbf{R}_{f}^{}$  Vs. percentage impregnation of ThF.

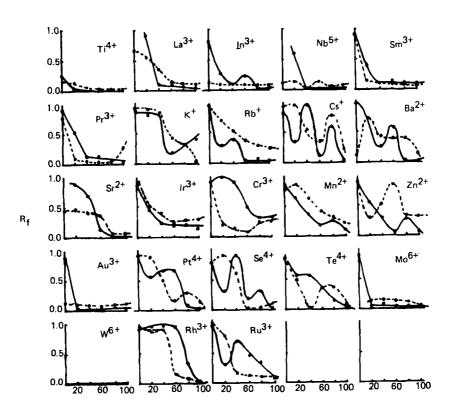



FIGURE 1b. Flot of  $R_{\mathbf{f}}$  Vs. percentage impregnation of TEF.

Percentage impregnation of TBP in Benzene

IN HCI 1N HNO<sub>3</sub>

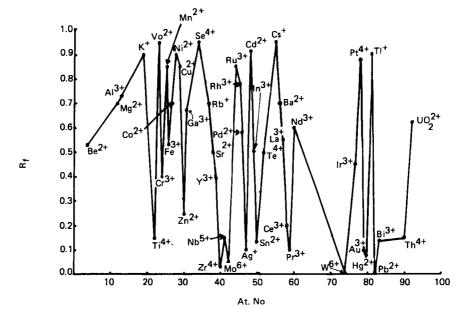



FIGURE 2. Plot of  $R_f$  Vs. atomic number in 1N HNO $_3$  (20% impregnation of TBF).

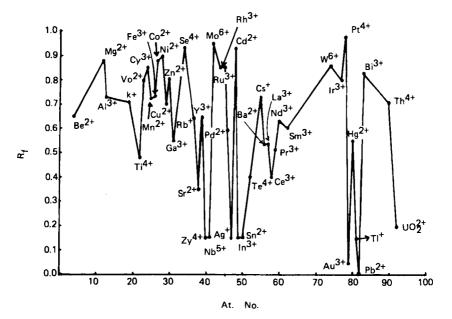



FIGURE 3. Flot of  $R_f$  Vs. atomic number in 0.1% citric acid (20% impregnation of TEF).

TABLE 3 Frecipitation of Cations in the Solvents Used

| 1 "                         | Eb2+, Ti4+, K+, Ce2+, Le3+, Nn2+, VC2+, Fe3+, Nb5+,<br>Be2+, Cs+, Rb+, Cd2+, Ba2+, Cr3+, Au3+, Al3+, Sn4+, | Ni2+, Sr <sup>2+</sup> , Rh <sup>3+</sup> , Hg <sup>2+</sup> , Se <sup>4+</sup> , Cu <sup>2+</sup> , Ru <sup>3+</sup> , Ce <sup>4+</sup> , Ho <sup>3+</sup> , Th <sup>4+</sup> , Pd <sup>2+</sup> , V <sup>3+</sup> , Zr <sup>4+</sup> , Mg <sup>2+</sup> , Te <sup>4+</sup> , Bi <sup>3+</sup> , Co <sup>2+</sup> , Ga <sup>3+</sup> , Sn <sup>2+</sup> , UC <sup>2+</sup> , Ha <sup>3+</sup> , Ir <sup>3+</sup> | Eb2+, 114+, K+, Ce3+, La3+, Hg2+, Hn2+, VC2+, Fe3+, Nb5+, Le2+, Cs+, Rb+, Cd2+, Ba2+, Cr3+, Au3+, Al3+, | 4+, N12+, Sr2+, Ph <sup>2</sup> +, Hg <sup>2+</sup><br>4+, Zr <sup>4+</sup> , Mg <sup>2+</sup> , Te <sup>4+</sup> , Ag <sup>+</sup> , | 002+, 11+, Md <sup>2</sup> +, Ir <sup>3</sup> +, Fd <sup>2+</sup> , ½+ | Egt, Rt, Ce2t, La3t, Rg2t, Nm2t, VC2t, Fe2t, Nb2t, Be2t, Cs1, Rbt, Cd2t, Cr3t, Au3t, Al3t, Ri2t, Rb7t, | <pre>'-', se4', Cu2', Ru7', Ce7', Fo7', Th7', Zr7',Ng7', 4', A8', Ei3', Co2', Ga3', Sn2', Uv2', Il1', Nd3', 3', Fd2', Y3'</pre> |
|-----------------------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| t Cations which precipitate | + 50<br>+ 50                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                   | *6+ Ho 6+ Fb                                                                                            | W H                                                                                                                                   | ٦ - ٢                                                                  | Fb <sup>2+</sup> , Ea <sup>2+</sup> , Sn <sup>4+</sup> T<br>W <sup>6+</sup> , Sr <sup>2+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                 |
| Solvert                     | i.                                                                                                         | n T                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                         | 8<br>2                                                                                                                                |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | w,                                                                                                                              |

| 11 <sup>4+</sup> h + kn <sup>2+</sup> vc <sup>2+</sup> Fe <sup>3+</sup> , Nb <sup>5+</sup> Fe <sup>2+</sup> Cs <sup>+</sup> , Rb <sup>+</sup> , Ea <sup>2+</sup> , Cr <sup>3+</sup> , Au <sup>3+</sup> , Al <sup>3+</sup> , Mi <sup>2+</sup> , W6 <sup>+</sup> , Rh <sup>3+</sup> , Hg <sup>2+</sup> , Se <sup>4+</sup> , Ru <sup>3+</sup> , No <sup>6+</sup> , Zr <sup>4+</sup> , Lg <sup>2+</sup> , Ga <sup>3+</sup> , Sn <sup>2+</sup> , Uc <sup>2+</sup> , Γl <sup>+</sup> , lr <sup>3+</sup> | Pb2+ Ti4+ K+ Ce2+, La3+, Nn2+, VO2+, Fe3+, Nb5+, Le2+, Ce2+, Rb+, Cd+, Fa2+, Cr2+, Au3+, Al3+, Sn4+, S | Eb2+ Ti4+ K+, Ce3+ La3+, in2+ Vc2+, Fe3+, lb5+, Be2+, Cs +, Rb+, Cd2+, Ba2+, Cr3+, Au3+, Al3+, Al3+, Sn4+, Ri2+, W6+, Sr2+, Rb3+, Hg2+, Se4+, Cu2+, Ru3+, Ce4+, Robet, 2r4+, Mg2+, Te4+, Ag+, Ei3+, Co2+, Ga3+, Sn2+, Uc2+, Tl+, Rd3+, Ir3+, Fd2+, Hg2+ |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pb2+, Ce3+, La3+, Γ14+<br>γ3+, Cd2+, Sn4+, Ea2+<br>Sr2+, Cu2+, Ce4+, Ru3-<br>Th4+, Te4+, Ae+,<br>Bi3+, Co2+, Γα3+,<br>Fd2+, Hg2+                                                                                                                                                                                                                                                                                                                                                                  | 120 <sup>4+</sup> , Te <sup>4+</sup> , B1 <sup>5+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>T</b> b. <sup>4+</sup>                                                                                                                                                                                                                               |
| 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . 7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ശ്                                                                                                                                                                                                                                                      |

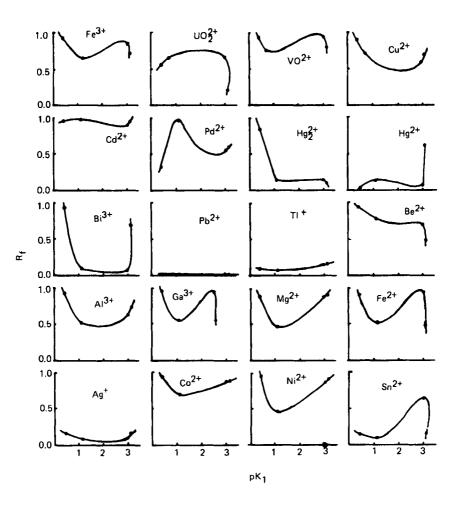



FIGURE 4a.

175

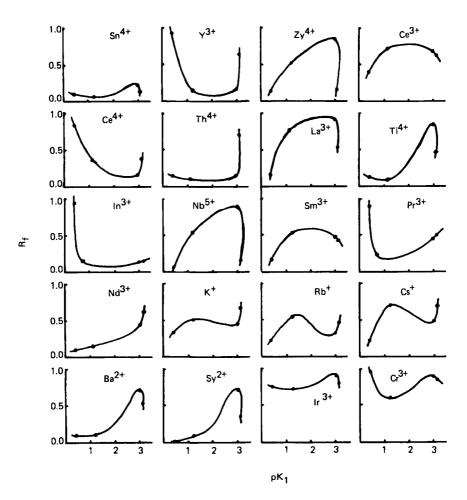



FIGURE 46.

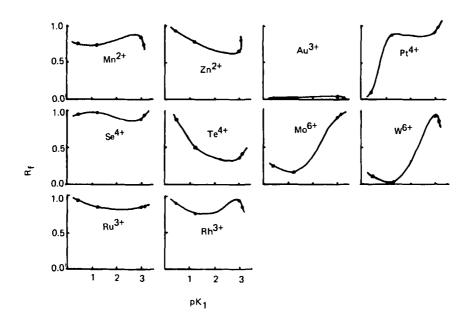
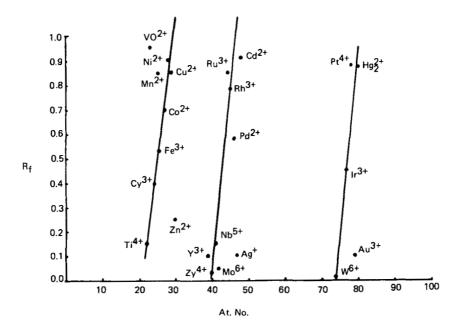




FIGURE 4c. Flot of R<sub>f</sub> Vs. pk<sub>1</sub>.

A plot of  $\rm R_f$  Vs. atomic number in 1F  $\rm hi.0_3$  on 20% TEF impregnated layers (Fig. 5) shows some interesting results. Almost all the transitional metals fall on a straight line. This indicates that in case of transitional metals, the  $\rm R_f$  is proportional to the atomic number which may be attributed to their similar chemical nature.

Table 1 summarizes the separations achieved. Thus the separations of  $\mathrm{Cs}^+ - \mathrm{k}^+$ ,  $\mathrm{Fe}^{2^+} - \mathrm{Vo}^{2^+}$ ,  $\mathrm{Y}^{3^+} - \mathrm{La}^{3^+}$ ,  $\mathrm{Zr}^{4^+} - \mathrm{Th}^{4^+}$  and  $\mathrm{Ti}^{4^+} - \mathrm{Zr}^{4^+}$  with the help of simple eluants are interesting and show the advantage of reversed phase chromatography. This is confirmed by the ternary separations described in Table 2.

Table 3 shows that most of the cations which have low  $R_{\rm f}$  values proipitate in the solvent system concerned. There are, however, a few exceptions e.g.,  ${\rm Ce}^{3+}$ ,  ${\rm La}^{3+}$  and  ${\rm Fd}^{2+}$  in solvent  ${\rm S}_4$  and  ${\rm Th}^{4+}$  in solvent  ${\rm S}_6$ . These ions precipitate in the solvent systems but show a high  ${\rm K}_{\rm f}$  on TEF impregnated silica gel-0 layers. This is probably due to the fact that the TEF impregnated silica gel-G immobilizes



Plot of  $R_f$  Vs. atomic number of transitional FIGURE 5. metal ions in 11 HNO3 (20% impregnation of TLF).

the precipitating oxalate, tartarate and citrate ions and hence increases the  $\mathbf{k}_{\mathbf{f}}$  value of the metal ions.

#### ACANCWLEDGENELT

The authors thank the University Grants Commission, New Delhi (India) for firancial assistance to B.M.S.

#### REFERENCES

- Winchester J. W., Rep. U.S. At. Energy Comm., CF-58-12-43, 1958.
   Dziomko V. M., Avilina V. N. and Ivanov C.V., in Gregory J. G., Evans B. and Weston F. C. (Editors), Froceedings of International Solvent Extraction Conference, ISEC 71, The Hague, April 1971, Vol. II, Society of Chemical Industry, London, 1913, 1971.
   Frinkman U. A. Th., Taphoorn J. H. and Devries G., Journal of Chromatogr., 84 407, 1973.
   Gureshi M. and Sharma S. D., Anal. Chem., 45, 1283, 1973.